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Abstract. Radio Access Network (RAN) slicing, a key 5G
feature, enables different slices (i.e. tenants or applications)
to share the same physical network infrastructure while
pursuing diverse objectives such as fairness, prioritization,
or maximizing throughput. Each slice is allocated a share
of radio resource blocks (RBs), which it further schedules
among its users as per its own performance objective. In this
paper, we identify the unique challenges that arise when per-
forming RAN slicing in today’s multi-cell deployments that
require a mechanism for managing interference among cells.
We highlight how interference management decisions, that
can be easily made in the absence of slicing (where all users
share a common objective set by the network operator), be-
come challenging with 5G slicing where we must respect the
individual objectives of multiple slices, while retaining per-
formance isolation across slices. We present a system, SiRAN,
that tackles this challenge through a unique decision-making
framework that allows different slices to independently con-
tribute towards interference management decisions. SiRAN
further employs a series of techniques to make such de-
cisions within tight RAN scheduling budget of hundreds
of microseconds. Trace-driven simulations with real-world
channel measurements show that SiRAN improves slice-level
objectives (e.g., throughput, fairness, flow completion times)
by 20–60% over state-of-the-art baselines, while consistently
meeting sub-millisecond decision deadlines.

1 Introduction
Network slicing [12, 23, 26, 42, 46] is a key architectural fea-
ture of 5G cellular networks. It enables cellular network
operators divide their network resources among different
“groups of users” or services (referred to as slices) as per by
their respective SLAs (Service Level Agreements). Each slice
then further sub-divides its share of resources among its
own users as per its own policy or performance objective.
In a way, 5G slicing crucially extends the notion of multi-
tenancy to cellular networks, with each slice acting as a
tenant. Examples of slices include mobile virtual network
operators (MVNOs), such as GoogleFi [4] or Cricket [2], that
leverage the physical infrastructure of network operators
such as AT&T and Verizon to serve their own customers.
A slice could also refer to a large enterprise managing mul-
tiple devices, or even specific applications (e.g. a team of
drones doing city-wide sensing). These slices share the same
physical infrastructure, while pursuing their own diverse
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Figure 1: Radio resource blocks (RBs) at a base-station represented
as a 2-D grid along time and frequency axes. The time slot spanning
an RB is referred as a TTI. The RBs are scheduled across users
belonging to different slices (three slices depicted in this example).
User𝑈𝑖 𝑗 belongs to slice 𝑆𝑖 .
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Figure 2: Typical multi-cell deployment with a macro-cell (𝐶1)
and small cells (𝐶2, 𝐶3, and 𝐶4). The figure depicts how RBs at a
given TTI are scheduled across users belonging to three different
slices at each cell. Muting the transmission of an RB at a cell (say,
the second RB at 𝐶1, as shown) ensures that users scheduled on
that RB at neighboring cells do not experience interference from
𝐶1. The amount of interference from 𝐶1 experienced by a user in a
neighboring cell depends on the user’s proximity to𝐶1, and impacts
that user’s channel quality (illustrated by the signal-strength bars).

performance objectives (e.g., fairness among all customers
of an MVNO, maximizing throughput for a slice comprising
a team of drones, an enterprising prioritizing certain users,
etc). A key goal of slicing is to support such diverse perfor-
mance objectives of each slice, while maintaining their SLAs,
and ensuring performance isolation between slices.

Network slicing is particularly crucial at the Radio Access
Network (RAN) where users across all slices share limited
radio resources at a base-station. These radio resources are
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split along the time and frequency axes into units called
resource blocks (RBs), as shown in Fig. 1. A user’s performance
(i.e. its throughput or datarate) depends on the amount of
RBs assigned to it, as well as the quality of the wireless
channel associated with those RBs. This channel quality (that
determines the datarate per RB) depends on various factors
including the user’s distance from the base-station, obstacles,
and potential interference from neighboring base-stations
transmitting on the same frequency (i.e. on the same RB). A
slice’s SLA with the network operator governs its resource
quota, i.e. number of RBs allocated to the slice at a base-
station [18, 32]. The slice then schedules its allocated RBs
across its users as per its own objective, taking the associated
channel qualities into account.
RAN slicing has primarily been explored in the context

of a single base-station (or cell) [18, 25, 33]. But today we
are seeing a sharp increase in multi-cell deployments [7, 8],
where the capacity and coverage of a single base-station
(macro-cell) is scaled by deploying multiple small cells in its
vicinity [11, 14, 15, 40, 44], as shown in Fig 2. Such multi-
cell deployments are crucial for keeping up with increasing
demands for cellular capacity. However, when two neighbor-
ing cells simultaneously transmit on the same frequency, the
interference between them can severely degrade the channel
quality (and, thereby, the throughput) of users in overlap-
ping coverage regions. This necessitates some mechanism
for interference management. Prior work has explored RAN
slicing and interference management in isolation – but to-
day’s scale and applications demands require deploying both
of them in tandem. In this paper, we identify and tackle
the unique challenge that arises in such a setting – when
we perform RAN slicing in conjunction with interference
management in multi-cell deployments.
To understand the challenge, let us first consider how

interference can be managed without any slicing, where
all users share a single global objective set by the network
operator (typically proportional fairness among all users).
Interference management in such a “no slicing” setting has
been explored by prior work [47, 50, 56]. A common strat-
egy is to mute the transmission of certain cells on specific
RBs [10, 27, 45]. As depicted in Fig 2, muting the transmis-
sion of an RB (say the second RB at macro-cell 𝐶1 in our
example) ensures that users at other cells scheduled on that
RB do not experience any interference from 𝐶1. Deciding
whether or not to mute an RB 𝑟 on a cell𝐶 requires weighing
the cost of muting incurred by users at cell𝐶 (due to unavail-
ability of muted RBs) versus its benefit enjoyed by users at
cells neighboring 𝐶 (due to boosted channel quality caused
by reduced interference). It is relatively straightforward to
reason about such a trade-off without slicing. The benefit vs.
cost of a muting decision can be analyzed based on whether
or not it improves the network operator’s global objective.

However, with 5G slicing, cellular users do not share a sin-
gle global objective. Instead, each slice optimizes for its own
objective, which is incomparable with other slices’ objectives.
The decision tomute RB 𝑟 on a cell𝐶 might seemingly benefit
a user of slice 𝑆𝑖 at a neighboring cell, but hurt a user of an-
other slice 𝑆 𝑗 (which would have otherwise been scheduled
on RB 𝑟 at cell 𝐶) hence violating the performance isolation
promised by slicing. So then how do we reason about such
a muting decision while supporting diverse slice objectives,
and without violating performance isolation across slices?

Our system, SiRAN, addresses this challenge by introduc-
ing a unique form of cost-benefit analysis that allows slices
to independently contribute towards a muting decision based
on their own objectives, without hurting the performance
of any other slice. SiRAN restricts the penalty of muting an
RB at a cell 𝐶 to the 𝐾 slices that benefit from the muting
decision, by reducing each of their quotas at cell 𝐶 by 1/𝐾
RBs. This enables us to assess the cost (reduced quota at cell
𝐶) versus the benefit (reduced interference at nearby cells)
independently for each of the 𝐾 slices as per the slice’s objec-
tive. The slice pays the penalty only if the muting decision
improves its objective. SiRAN mutes this RB at cell 𝐶 only if
one or more slices are willing to pay the penalty.
SiRAN must tackle multiple challenges to realize this ap-

proach. The first challenge is identifying the set of 𝐾 slices
for which the benefits of muting the RB outweigh the costs.
The cost incurred by a slice (1/𝐾 RBs) depends on the num-
ber of benefiting slices 𝐾 itself, creating a chicken-and-egg
problem. SiRAN tackles this through an iterative approach –
starting with an initial set of slices that presumably benefit
from the muting decision, and repeatedly updating the set
after conducting the cost-benefit analysis for each such slice.

The second challenge stems from the fact that muting de-
cisions are inter-twined with scheduling decisions – whether
or not an RB at a cell is muted influences the channel qual-
ity (and therefore the scheduling decision) on that RB at
neighboring cells. The changes in slice quotas caused by a
muting/scheduling decision for an RB further has a ripple
effect on how the subsequent RBs at each cell are scheduled.
Therefore, in order to accurately assess the cost and benefit
of muting an RB, SiRAN must ideally re-run the scheduler
for all the remaining RBs at each cell. However, doing so is
prohibitively expensive – the joint muting and scheduling
decisions must be made within tight time slots (i.e. within a
TTI, which ranges from 250𝜇s to 1ms in 5G). SiRAN handles
this challenge by employing a series of techniques that effec-
tively approximate the benefit and cost of a muting decision
without re-running the scheduler, as detailed in §4. Our ap-
proximation techniques also help tackle a third challenge –
computing the penalty of reducing a slice’s quota by a frac-
tion of an RB (despite the fact that RBs are allocated to users
as a whole and cannot be split).
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We implement SiRAN in an open-source RAN simulator
[43] and collect real-world traces to perform trace-driven
evaluations in §6. Our evaluation, across a variety of realistic
scenarios spanning hundreds of users split across multiple
slices with diverse objectives, shows how SiRAN results in 20-
60% improvement in the performance of individual slices (on
their desired performance objective) when compared to sev-
eral baselines. Our comparative baselines include (i) a RAN
slicing system that independently schedules RBs at each cell
without any interference management or muting [18], (ii)
a baseline that makes its muting decision based on a single
shared objective [10, 27, 45], ignoring the individual objec-
tives of each slice, and (iii) a strawman approach to enable
interference management with slicing [21] that we detail
in §2. Our evaluation further shows how the approxima-
tion techniques employed by SiRAN reduce the computation
overhead by orders of magnitude, enabling it to make its
muting decisions within stringent scheduling time budgets
of ≤ 1 ms, without compromising on their correctness.

2 Background and Related Work

2.1 Radio Access Network (RAN)
Radio Access Network (RAN) refers to the wireless last-mile
of cellular networks, connecting the base-station to the end-
devices (referred as user equipments or UEs). We explain
some relevant RAN concepts below.
Resource Block. RAN resources are divided along the fre-
quency and time axes. Specifically, the frequency bandwidth
of the radio spectrum is divided into multiple sub-carrier
frequencies, and time is divided into equal slots called TTIs
(Transmission Time Intervals). In 5G, a TTI slot can range
from 250𝜇s-1ms [24]. A resource block (RB) is formed of 12
frequency sub-carriers and 1 TTI slot, and is the smallest
resource unit that can be allocated to a user. We can thus
visualize the RBs as being organized into a 2D grid as shown
in Fig. 1. For simplicity, the figure depicts RBs as the schedul-
ing granularity across users. In practice, network operators
schedule radio resources in the granularity of resource block
groups (RBGs) to reduce control overhead. Each RBG con-
tains a fixed number of consecutive RBs ranging from 2 to
16 [24, 48]. Henceforth, we will use the term RBG to refer to
the scheduling granularity of radio resources across users.
Channel Quality and User Performance. The perfor-
mance of a user (i.e. how much throughput or data rate they
achieve) depends on the number of RBGs assigned to them
and the channel quality associated with those RBGs (higher
channel quality results in a higher data rate per RBG). Typ-
ically, the closer the user is to a base-station, the higher is
its channel quality. However, obstacles or interference from
neighboring base-stations can introduce noise in the signal
and degrade the channel quality. Different users (in different

locations) can thus experience drastically different channel
quality for the same RBG. Moreover, a given user can also
see a high variation in channel quality across RBGs, even
within the same TTI, due to a phenomenon called frequency
selective fading. The combination of these factors motivates
the need for incorporating channel awareness when schedul-
ing radio resources across users [17, 18]. The user equipment
(UE) periodically reports its channel quality to the base sta-
tion to enable channel-aware scheduling. We provide a brief
primer on channel-aware scheduling mechanisms in §3.1.

2.2 RAN Slicing
As mentioned in §1, RAN slicing is a key 5G feature that
brings the notion of multi-tenancy to cellular networks.
With RAN slicing, the network operator (e.g. AT&T, Ver-
izon, etc) divide the radio resources among heterogeneous
slices (MVNOs, enterprises, applications, etc) as per their
SLAs. The SLA of a slice translates to a minimum quota of
RBGs that the network operator must allocate to it at a base-
station [18, 32]. Each slice then schedules its quota of radio
resources across its own users as per its own performance
objective (e.g. fairness, prioritization, throughput maximiza-
tion, etc). The performance objective typically varies across
slices. A slicing system must support such diverse slice ob-
jectives, and ensure each slice gets its quota of resources
while retaining performance isolation across slices.

Prior work on RAN slicing has largely been restricted to
scheduling radio resources at a single base-station (e.g. [3,
18, 25, 32]). Other works [16, 38] look at the problem of
mapping network-wide service-level agreements (SLAs) to
per-cell resource quotas for a given slice but ignore potential
interference across cells. We leverage these prior works for
determining per-cell slice quotas and doing channel-aware
slicing and scheduling [18] (as detailed in §3.1). The primary
focus of our work, however, is to address the challenges that
arise from the interplay of RAN slicing with interference
management across multiple cells.

2.3 Multi-Cell Deployments
As depicted in Fig. 2, network operators commonly scale
cellular capacity by augmenting coverage regions of macro
base stations with lower powered “small cells” [11, 15, 44].
These small cells can be deployed in locations where the
macro cell provides poor coverage due to increased distance
or obstacles such as high buildings. Amacro-cell region (with
coverage radius of 1-25Kms) can be expected to support 1-
10 small cells [6] (each with coverage radius spanning 0.1-
1Kms) [1, 13, 39, 40]. Recent years have witnessed a sharp
increase in such multi-cell deployments. At the end of 2022,
there were 142K macro-cell towers across the US, and a
total of 452K outdoor small cell nodes [8]. It is projected
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that by 2027, there will be 13 million outdoor 5G small cell
deployments at a global level [7].
One way to deploy multiple cells is to partition the fre-

quency bandwidth among cells, such that they never inter-
fere on the same band. However, such static partitioning
of frequency can result in severe under-utilization of the
network and reduced user throughput (as highlighted in
Appendix A). Therefore, an increasingly common mode of
deploying multiple cells is for all the cells to share the same
frequency band, which avoids partitioning the bandwidth,
thereby increasing the overall network capacity [20, 22].
This, however, results in interference, and necessitates a
mechanism for managing it.

2.4 Interference Management
Interference management has been studied in 4G context
(without slicing). CoMP (Coordinated Multi-Point) [5, 29, 36,
37, 40, 51] encompasses a suite of techniques for managing
interference that vary in their deployment complexity. These
include techniques such as coordinated beam-forming, coor-
dinated muting, etc. In this paper, we focus on coordinated
muting, which enables muting selected RBGs on selected
cells during each TTI to manage interference.
When compared to other CoMP strategies, muting is far

more feasible to implement. It requires the cells to synchro-
nize and coordinatewith one another at per-TTI timescales of
≈ 100𝑠 𝜇𝑠 . Prior work demonstrated the feasibility of deploy-
ing muting [29, 30], and of achieving sub-ms coordination
between cells [40]. More recently, the move towards virtu-
alized RAN, where RAN processing is deployed in servers
hosted in the edge datacenters (away from, but still in the
geographical vicinity of, the base station) further provides
a ready-made platform where such coordinated decisions
across multiple cells can take place [35, 55], that can be lever-
aged by our system.

However, interference management (and muting) has only
been explored in the context of optimizing a single objective
(i.e. proportional fairness) across all users [10, 27, 45] – we
provide a primer on how muting works in this traditional
single objective scenario in §3.2. The focus of our work is
to manage interference via muting in the presence of RAN
slicing, with each slice optimizing its own diverse objective.

2.5 Interference Management with Slicing
Summarizing the context so far, prior work on RAN slicing
has not considered the problem of interference management
in multi-cell scenarios. On the other hand, the prior work on
interference management has not considered the new regime
of network slicing where users are grouped into slices with
diverse objectives.
One exception, that considers both interference manage-

ment and slicing, is RSEP [21]. RSEP proposes an extreme

RBG C1 C2 C3

1 U11 (50) Muted U13 (10)

2 U21 (30) U22 (10) U23 (20)

3 U31 (50) U32(30) U33 (5)

RBG C1 C2 C3

1 U11 (50) Muted U33(20)

2 U21 (30) U32(70) U13 (60)

3 U31 (50) U22 (40) U23 (40)

Cell C1
Cell C2

Cell C3

U21:S2

U11:S1

U33:S3

U23:S2U22:S2 U32:S3

Slice S1

Slice S2

Slice S3

Primary Cell Signal
Interfering Cell Signal

RSEP Flexible (channel-aware) assignment

U13:S1

U31:S3

Total scores: S1 = 60; S2 = 60; S3 = 85 Total scores: S1 = 110; S2 = 110; S3 = 140

Figure 3: Three RBGs at three cells assigned across users split
among three slices. The numbers in paranthesis denote the datarate
achieved by the scheduled user. RSEP (left) restricts slices to use the
same RBGs across cells. A more flexible channel-aware assignment
(right) results in higher performance across all slices.

solution of assigning a given slice exactly the same set of
resource block groups (RBGs) at each cell. We depict this in
Fig. 3 with the table on the left – slice 𝑆1 is assigned the first
RBG at each of the three cells (𝐶1,𝐶2 and𝐶3), while slices 𝑆2
and 𝑆3 are assigned the second and third RBG respectively at
each cell. Such an assignment ensures that any muting deci-
sion for an RBG only affects users from the same slice at the
neighboring cells. It thereby reduces the problem of muting
to the no slicing (single objective) setting. However, such a
constrained assignment inherently ignores channel diversity,
where the channel quality on a given RBG varies drastically
depending on which user is scheduled on it [17, 18, 53] (as
explained in §2.1). This results in inefficient usage of the
radio spectrum and reduced network throughput (up to 40%
lower than channel-aware slicing [18]).
Fig.3 illustrates this through a simple example. The table

on the left shows the schedule with RSEP, where each slice is
restricted to use the same RBG at each cell. Slice 𝑆1 prefers to
mute its assigned RBG at cell𝐶2 to boost the channel quality
of its user𝑈11 at the neighboring cell𝐶1. Slice 𝑆1’s user at𝐶3
(𝑈13) is not significantly impacted by interference from 𝐶2.
The numbers in paranthesis denote the datarate (throughput)
achieved by the scheduled user. The total datarate experi-
enced by Slices 𝑆1, 𝑆2, and 𝑆3 (summed across their scheduled
users) is 60, 60, and 85 respectively.

The table on the right shows a more “flexible” assignment
of RBGs across slices that can leverage channel diversity.
Such an assignment can achieve superior performance by
allowing different slices to use different RBGs across differ-
ent cells, as per their respective channel qualities (e.g. RBG
2 is assigned to slice 𝑆2 at cell 𝐶1 and to slice 𝑆3 at cell 𝐶2).
The unrestricted assignment further allows a given muting
decision to simultaneously benefit multiple slices thus amor-
tizing the cost of muting (for e.g. muting the transmission
of RBG 1 at cell 𝐶2 boosts the channel qualities of users 𝑈11
and 𝑈33 in Slice 𝑆1 and Slice 𝑆3 respectively). In this case,
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the total datarate, summed across all scheduled users for
Slices 𝑆1, 𝑆2, and 𝑆3 is 110, 110, and 140 respectively; which
is higher across the board when compared to RSEP.

While this is a toy example, our evaluation with real-world
traces in §6 reinforces the performance benefits of such “flex-
ible” channel-aware assignment of RBGs across slices and
cells, when compared to RSEP’s restricted assignment.
However, enabling such flexible channel-aware assign-

ment requires reasoning about the muting decision across
multiple slices with diverse objectives: Is it okay to mute
the first RBG at 𝐶2 to benefit slices 𝑆1 and 𝑆3? Which slice
incurs the cost of this muted RBG and how? We need a way
to answer such questions in a manner that still retains per-
formance isolation across slices. Our system, SiRAN, deals
with this challenge.

3 Primer on Relevant Mechanisms
Before diving into SiRAN’s design, we provide a brief primer
on mechanisms for channel-aware slicing at a single cell
(§3.1), and for interference mechanism via muting in a no
slicing setting with a single global objective (§3.2).

3.1 Channel-aware Slicing and Scheduling
Channel-Aware Inter-Slice Scheduling. SiRAN leverages
RadioSaber [18] for channel-aware slicing at each cell, where
an inter-slice scheduler assigns RBGs to slices and an intra-
slice scheduler assigns RBGs to users within the slice. In
each TTI, the inter-slice scheduler greedily assigns RBGs to
slices, one RBG at a time as follows. It queries each intra-slice
scheduler asking which user will be scheduled on the RBG
if that RBG is assigned to that slice. Each slice responds to
this query based on its own intra-slice scheduling policy
(detailed next). The responses allow the inter-slice scheduler
to determine the channel quality associated with that RBG
for each slice (based on which user each slice picks). It then
assigns the RBG to the slice with the highest channel quality.
As mentioned in §2.2, each slice has a per-TTI quota of RBGs
derived from its SLA.While greedily assigning RBGs to slices,
the scheduler tracks their quota, and avoids assigning more
RBGs to slices that have exhausted their quotas.
Channel-Aware Intra-Slice Scheduling. For a given RBG
𝑅𝑖 , the intra-slice scheduler assigns each of the slice’s user
𝑢𝑘 a score (𝑠𝑐𝑜𝑟𝑒 (𝑢𝑘 , 𝑅𝑖 )) based on the desired performance
objective of the slice. It then assigns 𝑅𝑖 to the user with
the highest score. For example, a slice wanting to maximize
throughput would set 𝑠𝑐𝑜𝑟𝑒 (𝑢𝑘 , 𝑅𝑖 ) = 𝑖𝑛𝑠𝑡_𝑟𝑎𝑡𝑒 (𝑢𝑘 , 𝑅𝑖 ) (i.e.
the instantaneous data rate 𝑢𝑘 would achieve if it is allo-
cated 𝑅𝑖 , as per its channel quality for 𝑅𝑖 ). A slice can op-
timize for proportional fairness (a popular objective in cel-
lular networks [28, 34, 53]) by weighing the instantaneous
rate with the average rate allocated to 𝑢𝑘 so far, i.e. by set-
ting 𝑠𝑐𝑜𝑟𝑒 (𝑢𝑘 , 𝑅𝑖 ) = 𝑖𝑛𝑠𝑡_𝑟𝑎𝑡𝑒 (𝑢𝑘 ,𝑅𝑖 )

𝑎𝑣𝑔_𝑟𝑎𝑡𝑒 (𝑢𝑘 ) . The scores can also be
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Figure 4: Example showing muting for a single objective (no slic-
ing). The figure shows user locations with respect to cells. The table
on the bottom shows the assignment of RBG 𝑅𝑖 at each cell for the
different muting hypotheses. The number in parentheses indicates
the score for the corresponding user. Muting RBG 𝑅𝑖 at cells 𝐶1 or
𝐶2 produces a net benefit, while muting it at𝐶3 produces a net loss.

weighed as per user priorities. Such score-based scheduling
of RBGs across users is also adopted in a no slicing setting,
where all users share a common global objective [17].

3.2 Muting under a Single Objective
We next detail how muting decisions are made without slic-
ing where all users share a single global objective. Past work
adopts a greedy strategy for this [10, 27, 45]. In each TTI, we
greedily pick RBG 𝑅𝑖 , and analyze the cost-benefit trade-off
of muting that RBG at each cell, one cell at a time (referred to
as the muting hypothesis). It is beneficial to mute 𝑅𝑖 at cell𝐶 𝑗

if the boost in channel quality at the neighboring cells over-
powers the penalty of losing out on that RBG at𝐶 𝑗 . To assess
this, we compute the system-wide total score under eachmut-
ing hypothesis𝐻 𝑗 (where 𝑅𝑖 is muted at cell𝐶 𝑗 ) and under no
muting (denoted as hypothesis𝐻0). The total score under hy-
pothesis 𝐻 𝑗 is computed as:

∑
𝑢𝑘 ∈𝑈 (𝑅𝑖 ,𝐻 𝑗 ) 𝑠𝑐𝑜𝑟𝑒 (𝑢𝑘 , 𝑅𝑖 ). Here,

𝑈 (𝑅𝑖 , 𝐻 𝑗 ) denotes the set of users that are scheduled on 𝑅𝑖 at
each cell under hypothesis𝐻 𝑗 . The user scores are computed
as described in §3.1, as per the shared global objective.

The difference between the total score of a muting hypoth-
esis 𝐻 𝑗 and no muting hypothesis 𝐻0 gives us the net benefit
of muting RBG 𝑅𝑖 at cell 𝐶 𝑗 . If the net benefit is negative for
all muting hypothesis, 𝑅𝑖 is not muted at any cell. Otherwise,
we select the hypothesis with the largest net benefit and
mute the RBG at that cell.

Fig. 4 presents an example for this, where we have 3 cells
and want to determine whether or not to mute the transmis-
sion of a cell on a given RBG 𝑅𝑖 . Hypothesis 𝐻0 is when 𝑅𝑖
is not muted at any cell (top row in Fig. 4). The three cells
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schedule UEs 𝑈1, 𝑈4 and 𝑈7, that do not experience signifi-
cant interference from other cells. The total score for𝐻0 (last
column) is computed by adding the scores of each of these
three UEs (indicated in parentheses). The next hypothesis
𝐻1 (second row) is where 𝑅𝑖 is muted at 𝐶1 – this impacts
the scheduling decision at cell 𝐶2, boosting channel quality
of “edge” UE𝑈3. The set of scheduled UEs, based on whom
𝐻1’s total score is computed, therefore includes𝑈3 at𝐶2 and
𝑈7 at 𝐶3. Likewise, hypothesis 𝐻2 (third row), where 𝑅𝑖 is
muted at 𝐶2, boosts the channel quality of “edge” UEs 𝑈2
and𝑈6, and they get scheduled on this RB at cells 𝐶1 and 𝐶3
instead. The overall score of 𝐻2 is computed by adding their
scores. We similarly consider the impact of muting 𝑅𝑖 at 𝐶3
and compute the overall score of 𝐻3.
Comparing scores of 𝐻1, 𝐻2 and 𝐻3 with 𝐻0, we can see

how muting 𝑅𝑖 at 𝐶1 or 𝐶2 produces a positive net benefit
while muting it at 𝐶3 incurs a loss. The benefit of muting at
𝐶2 is higher, so the system will mute 𝑅𝑖 at 𝐶2. This freezes
the muting and scheduling decision for that RBG, and we
then move on to the next RBG and repeat the same steps.

A few points are worth noting:
• In the above example, we could have additional hypotheses
where we mute 𝑅𝑖 on more than one cell (resulting in 2𝑀
hypothesis for each RBG, where 𝑀 is the number of cells).
We observed that muting multiple cells for the same RBG
provides limited benefit since most interference occurs be-
tween the macro-cell and small cells, i.e., muting either the
macro-cell or one of the small cells that interferes with the
user being served by the macro-cell is sufficient. So we re-
strict the assessment to consider muting up to one cell per
RBG (making the number of hypotheses linear in𝑀).
• The muting hypothesis is evaluated without actually mut-
ing the cell – it uses knowledge about the channel quality
each user will experience with and without interference from
the neighboring cells. (The 3GPP standard specifies the use
of specific “resource elements” to enable such interference
measurement [9, 19], as detailed in Appendix B).

4 SiRAN Design

SiRAN uses the greedy muting approach described in §3.2,
where in each TTI, it greedily decides whether or not to
mute an RBG at any cell, one RBG at a time. However, rather
than catering the muting decision towards a single shared
objective across all users, SiRAN makes these decisions in
manner that respects individual slice objectives (as described
in the remainder of this section). The greedy per-RBG mut-
ing decisions are made jointly with greedy channel-aware
scheduling decisions (i.e. which users, belonging to which
slice, should be scheduled on the unmuted RBGs) – SiRAN
uses RadioSaber’s scheduling logic for this, as described in
§3.1. Jointly making muting decisions with channel-aware

Cell C1
Cell C2

Cell C3

U11:S1
U41:S4 U51:S5

U31:S3
U21:S2

Muting 
Hypothesis C1 C2 C3

H0 U11:S1 U21:S2 U31:S3
H2 U41:S4 Muted U51:S5

Slice S1 Slice S2

Slice S3 Slice S4

Slice S5

Figure 5: The example above shows the assignment of RBG 𝑅𝑖
across slices under no muting hypothesis (𝐻0) and the hypothesis
where the RBG is muted at cell𝐶2 (𝐻2). The numbers in parenthesis
indicate the user’s slice association.
RAN slicing, requires SiRAN to address multiple challenges,
that we detail in this section:
(1) How do we reason about a muting hypothesis while main-

taining performance isolation between slices? (§4.1)
(2) How do we efficiently compute the benefit of a muting

decision for a given slice based on its own objective? (§4.2)
(3) How do we efficiently compute the cost of a muting decision

for a given slice based on its own objective? (§4.3)
(4) How do we decide which muting hypothesis to implement

(i.e. which cell to mute on an RBG) when different slices
benefit from different decisions? (§4.4)

4.1 Reasoning about a muting hypothesis
While it is straightforward to reason about muting decisions
when all users share a single common objective (as described
in §3.2), SiRAN must deal with the challenge of handling
diverse slice objectives in a manner that maintains perfor-
mance isolation between slices. Fig. 5 illustrates the challenge
by considering how an RBG 𝑅𝑖 is assigned to users across
slices under no muting and when it is muted at cell𝐶2. When
𝑅𝑖 is not muted (hypothesis𝐻0, top row), users of slices 𝑆1, 𝑆2
and 𝑆3 are scheduled on 𝑅𝑖 at cells𝐶1,𝐶2 and𝐶3, respectively.
Muting 𝑅𝑖 at 𝐶2 (hypothesis 𝐻2, bottom row) changes the
channel quality (and scores) of users in the neighboring cells
𝐶1 and𝐶3, causing 𝑅𝑖 to be assigned to a different set of slices
(𝑆4 at 𝐶1 and 𝑆5 at 𝐶3). It therefore appears as if the decision
to mute RBG 𝑅𝑖 at cell𝐶2 benefits slices 𝑆4 and 𝑆5, at the cost
of slices 𝑆1, 𝑆2, and 𝑆3. How do we make a systematic choice
in such a scenario – is it okay to help some slices at the
cost of others? Wouldn’t that violate performance isolation
across slices? SiRAN effectively avoids making such choices
using the following insight:
Resource attribution to retain isolation. Rather than
considering a muted RBG at a cell 𝐶 𝑗 as a wasted resource
that belongs to no one, we count it towards the quota of
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the 𝐾 slices that benefit from muting it, i.e. we reduce the
quota of those slices at 𝐶 𝑗 by 1/𝐾 RBGs. This restricts the
cost of muting (i.e., reduction in available resources at 𝐶 𝑗 )
to these 𝐾 slices that benefit from boosted channel qualities
at neighboring cells. This, in turn, enables independent cost-
benefit analysis based on the specific objectives of these
slices.

Revisiting the example in Fig. 5: given how we account for
the muted resource, since the quotas of 𝑆1, 𝑆2, and 𝑆3 remain
intact, they are not really penalized by the decision to mute
𝑅𝑖 at 𝐶2 – each of these slices would simply be assigned a
different RBG at cells 𝐶1, 𝐶2, and 𝐶3 respectively. 𝑆4 and 𝑆5,
in contrast, may lose some quota at𝐶2 if the RBG is muted –
the cost of losing that quota at 𝐶2 should be compared with
the benefit that these slices experience at cells𝐶1 and𝐶3 due
to muting. For instance, if serving 𝑆4’s user 𝑈41 at 𝐶1, comes
at the cost of penalizing a higher priority user at 𝐶2 due to
the reduced quota, 𝑆4 might not want to proceed with the
muting decision.
Challenge. How do we identify the set of 𝐾 slices that
benefit from muting, if weighing the benefit vs. the cost
of muting depends on 𝐾 itself (as we reduce the quota of
benefiting slices by 1/𝐾 RBGs)?
Our approach. We use an iterative algorithm (summarized
in Fig. 6). Consider the hypothesis 𝐻 𝑗 of muting 𝑅𝑖 at 𝐶 𝑗 :
(i)We start with assuming that each slice that uses 𝑅𝑖 at𝐶 𝑗 ’s
neighboring cells (i.e. at 𝐶𝑛 ≠ 𝐶 𝑗 ) under 𝐻 𝑗 is benefited by
the muting. We refer to this set of slices asS. We accordingly
reduce the quota of each slice in S by 1

|S | RBGs at cell 𝐶 𝑗 .
(ii) We then individually assess the benefit (§4.2) and cost
(§4.3) of muting for each slice in S. If the assessment reveals
a slice 𝑆 ′ in S is hurt by muting (i.e. the cost it pays due to
the quota reduction at𝐶 𝑗 is higher than the benefit it gets at
the neighboring cells), then we exclude it from participating
in the muting decision. Specifically, we undo the reduction
in quota of slice 𝑆 ′ at 𝐶 𝑗 , and remove it from the set S. This
reduces the size of set S, thereby increasing the share of
quota reduction at 𝐶 𝑗 for the remaining slices in S.
(iii)We accordingly update the cost of muting for the remain-
ing slices in S, and re-assess the benefit vs cost of muting
for each of these slices as per step (ii).
(iv) We repeat steps (ii) and (iii) in a loop until the set S
stops changing, giving us the converged set of 𝐾 = |S| slices
that benefit from the muting hypothesis. (The number of
iterations is bounded by the number of cells.)

So for our example in Fig. 5, we will start by assuming both
𝑆4 and 𝑆5 benefit from muting hypothesis 𝐻2, and evaluate
the cost of reducing 0.5×RBG from the quota of both of these
slices at𝐶2. If the cost of muting for 𝑆4 turns out to be higher
than the benefit it sees, 𝑆4 will get back its quota of 0.5×RBG
at 𝐶2 and it will be removed from S. The muting hypothesis

𝐻2 will then be considered valid if 𝑆5 sees sufficiently high
benefit over the cost of 1×RBG quota reduction at 𝐶2.
The following is worth noting.
• Slice eligibility for muting. A slice in S can participate
in the muting decision only if it has sufficient quota (at least
1
|S | RBGs) remaining at 𝐶 𝑗 to pay for the cost of muting. If a
slice has exhausted all of its quota at𝐶 𝑗 (from the previously
allocated RBGs in that TTI), then it cannot induce muting at
𝐶 𝑗 and cannot be added to the set S.
• Valid muting hypothesis.We consider 𝐻 𝑗 to be a valid
hypothesis if the resulting set S is non-empty (i.e. there
are non-zero number of slices that benefit from the muting
decision after paying the shared cost of muting). We similarly
check the validity of other muting hypothesis (i.e. of muting
𝑅𝑖 at other cells). If none of the muting hypotheses for 𝑅𝑖
are valid, we do not mute it at any cell. If there are multiple
valid muting hypotheses, we select one (as detailed in §4.4)
and proceed with that decision.

4.2 Computing Benefit of Muting
We now explain how SiRAN computes the benefit of a given
muting hypothesis for a given slice in S. Let us refer again
to the example in Fig. 5, and consider how to compute the
benefit of muting hypothesis 𝐻2 (i.e muting of RBG 𝑅𝑖 at
𝐶2) that slice 𝑆4 enjoys at the neighboring cell 𝐶1. At a high-
level, this can be computed by comparing the score of 𝑆4
at cell 𝐶1 with and without muting 𝑅𝑖 at 𝐶2 (with scores
defined based on the slice’s objective, as detailed in §3.1).
However, naively comparing the assignment of 𝑅𝑖 under 𝐻2
with the no muting hypothesis 𝐻0, it would seem that the
performance of 𝑆4 (which was not even assigned 𝑅𝑖 at any
cell under 𝐻0) is far better under 𝐻2 (where it is assigned 𝑅𝑖
at 𝐶1). This is a misleading assessment that overestimates
the benefit of muting. This is because, by getting scheduled
on 𝑅𝑖 at𝐶1 under hypothesis𝐻2, 𝑆4 uses up a quota of 1 RBG
at𝐶1. It will therefore be scheduled on 1 less RBG among the
remaining 𝑁 −1 RBGs in that TTI under𝐻2, when compared
to the remaining 𝑁 − 1 RBGs under 𝐻0.

In order to truly assess the benefit of muting, we need to
compare how the RBG quota used by 𝑆4 to schedule user
𝑈41 on 𝑅𝑖 under 𝐻2 compares to the use of that RBG quota
under 𝐻0. This ideally requires comparing the total score of
𝑆4 across hypotheses 𝐻0 and 𝐻2, not just for RBG 𝑅𝑖 , but for
all of the remaining 𝑁 −1 RBGs in that TTI, such that we can
account for how that RBG quota is subsequently used under
𝐻0. This implies that we need to run the scheduler to compute
the hypothetical assignment of UEs on these remaining 𝑁 −1
RBGs for each muting hypothesis that we wish to greedily
assess for each RBG. As we show in §6, the O(𝑁 2) complexity
induced by this is prohibitively expensive, given the tight
TTI timescales at which scheduling and muting decisions
must be made. So how do we work around this?
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Figure 6: SiRAN’s Workflow

Our approximation technique. We use a simple heuristic
to approximate the benefit of muting without re-running the
scheduler for the remaining RBGs. Referring to our example
in Fig. 5, in order to assess the benefit to 𝑆4 at neighboring cell
𝐶1 under hypothesis 𝐻2, we compute which 𝑆4 user would
have hypothetically been allocated 𝑅𝑖 at𝐶1 under no muting,
if that RBG was restricted to being allocated exclusively
to 𝑆4. We then subtract 𝑆4’s score at 𝐶1 obtained from this
hypothetical assignment of 𝑅𝑖 under no muting from its
score at 𝐶1 under hypothesis 𝐻2. We use the outcome as our
proxy for the benefit of muting. This essentially captures the
impact of reducing interference from 𝐶2 for slice 𝑆4’s users
at 𝐶1.

However, it masks the impact of channel diversity in our
assessment (since in reality, 𝑆4 is not allocated 𝑅𝑖 under no
muting, but would instead be allocated a different RBG).
Nonetheless, we find this approximation works well in prac-
tice because in situations where the benefit substantially
outweighs the cost of muting, the effect of interference mit-
igation overpowers the effects of channel diversity. When
the benefit is low (interference effects are small), the slice
is anyway removed from set S, and the precise value of the
benefit does not make a difference.
If a given slice 𝑆𝑘 has users scheduled in 𝑅𝑖 at multiple

neighboring cells under hypothesis 𝐻 𝑗 , we approximate the
benefit seen by 𝑆𝑘 at each of these cells and sum them up to
get the overall benefit to 𝑆𝑘 for hypothesis 𝐻 𝑗 .

4.3 Computing Cost of Muting
As mentioned before, we account for the cost of muting RBG
𝑅𝑖 at 𝐶 𝑗 by subtracting 1

|S |RBGs at cell 𝐶 𝑗 from the quota of
each slice in set S (that benefit from the muting). Assessing
this cost for a given slice 𝑆𝑘 requires comparing how 𝑆𝑘
is scheduled on remaining RBGs at 𝐶 𝑗 with and without
muting (i.e. with and without the quota reduction). This
causes two hurdles. First, as discussed in §4.2, re-running
the schedulers across all remaining RBGs for each muting
hypothesis is prohibitively expensive. Second, how do we
even assess the impact of fractional quota reductions? RBGs
must be wholly allocated to a single user, and cannot be
split across multiple users. When multiple slices have non-
integral quotas, the scheduler allocates the last RBG in the
TTI (that must ideally have been split between these slices)
to one of these slices picked randomly. It then keeps track
of the (fractional) surplus or deficit in quota allocation, that

rolls over to the next TTI. Rolling over of fractional offsets
ensures that a slices pays its due cost of muting over time.
But the impact of that might not be seen in that TTI, and
re-running the scheduler over multiple TTIs would increase
the computational complexity further.
Our approximation technique. At the start of each TTI,
we run the scheduler once to determine an initial assignment
of each RBG under the hypothetical scenario where no RBG
is muted at any cell. We use this as a reference schedule to
assess how much an RBG is worth to a given slice at a given
cell and accordingly compute the cost of quota reduction,
when assessing individual muting hypothesis for each RBG
(without re-running the scheduler).

The worth of an RBG for 𝑆𝑘 at cell 𝐶 𝑗 increases as we
keep reducing the slice’s quota at that cell. This is because
when a slice’s quota is reduced, it will kick out (i.e. avoid
scheduling) users on RBGs with the lowest score. Further
quota reduction incurs a higher cost, by kicking out users
with higher scores. We account for this by clustering RBGs
based on their scores and using the average score within each
cluster as the worth of the RBG in that cluster. (We use a
cheap clustering logic based on standard deviations from the
average score.) When computing the cost of quota reduction,
we first consider RBGs in the lowest score cluster. If the
average score of that cluster is 𝑋 , then a quota reduction
of 0.5 has a cost of 0.5𝑋 . If the total quota reduction for a
slice (summed across muting decisions over multiple RBGs)
exceeds the number of RBGs in the lowest score cluster, we
move over to the next lowest score cluster, and so on.
The reference schedule does not account for potential

muting at other cells which can increase the worth of RBGs.
Therefore, the cluser average scores taken directly from the
reference schedule as described above can underestimate the
cost that slice 𝑆𝑘 incurs for muting at 𝐶 𝑗 . To compensate for
that, we update 𝑆𝑘 ’s average score for each RBG cluster at𝐶 𝑗

by multiplying it with an error ratio 𝛽 . We compute 𝛽 from
past observation – by how much did 𝑆𝑘 ’s estimated score
at 𝐶 𝑗 in the previous TTI 𝑡 differed from the actual score
it achieved at 𝐶 𝑗 in that TTI. Specifically, 𝛽 =

𝐴 𝑗,𝑘,𝑡

𝐸 𝑗,𝑘,𝑡
, where

𝐴 𝑗,𝑘,𝑡 is the (actual) average score across all RBGs actually
assigned to 𝑆𝑘 at 𝐶 𝑗 in TTI 𝑡 and 𝐸 𝑗,𝑘,𝑡 is the (estimated)
average score across all RBGs assigned to 𝑆𝑘 at 𝐶 𝑗 in the
reference schedule during the previous TTI 𝑡 .
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4.4 Comparing Muting Hypotheses
We use the benefit and cost computed as described above to
assess whether the muting hypothesis is valid as outlined in
§4.1. We empirically observed that in most cases, at most one
muting hypothesis is valid for a given RBG (for the reason
explained in §3.2). When there are multiple valid muting
hypothesis𝐻 𝑗 , we pick one as follows. For each valid muting
hypothesis 𝐻 𝑗 , we compute the total benefit seen by each
slice in setS𝑗 (where setS𝑗 is the converged set of benefiting
slices in 𝐻 𝑗 ) and divide it by the cost incurred by that slice.
We then sum this benefit to cost ratio across all slices in set
S𝑗 , and favor the muting hypothesis that has the highest
value for this sum.

5 Implementation
Customizing Slice Objectives.We leverage the interface
provided by RadioSaber [18] to enable slice operators to
customize their objectives using certain parameters. In par-
ticular, for a given slice 𝑆𝑘 , we assign the following score
to user 𝑢𝑚 in the slice for RBG 𝑅𝑖 : 𝑠𝑐𝑜𝑟𝑒 (𝑢𝑚, 𝑅𝑖 ) = 𝑤𝑚 ×
𝑖𝑛𝑠𝑡_𝑟𝑎𝑡𝑒 (𝑢𝑚,𝑅𝑖 )
(𝑎𝑣𝑔_𝑟𝑎𝑡𝑒 (𝑢𝑚 ) )𝛼 , where𝑤𝑚 is the weight of user 𝑢𝑚 (set based
on its relative priority) and 𝛼 ∈ R≥0 controls the degree of
fairness. This directly maps to optimizing a well known pa-
rameterized objective known as weighted alpha-fairness [31]
for that slice. Each slice can configure𝑤𝑚 and 𝛼 differently
to capture different objectives. With equal weights across
all users, setting 𝛼 = 0 maximizes throughput (MT). Setting
𝛼 = 1 achieves proportional fairness (PF), where the𝛼-fair ob-
jective is reduced to maximizing

∑
𝑢𝑚∈𝑈𝑘

𝑤𝑚𝑙𝑜𝑔(𝑥𝑚) (where
𝑥𝑚 is the throughput achieved by 𝑢𝑚). Increasing 𝛼 further
increases the degree of fairness among users of the slice in
terms achieved throughput.
Implementation in Simulator. Due to the absence of re-
quired features in current versions of open-source RAN
testbeds (notably, per-RBG muting capability), we evaluate
our system using trace-driven simulations that further al-
lows us to scale to hundreds of users. We implement SiRAN
in an open-source cellular simulator [18, 43]. Our simulator
configuration for 5G small cell deployment (detailed in §6)
adheres to the 3GPP-specified parameters [6].
Collecting user traces.We use NG-Scope [54] deployed on
USRP X310 to collect real-world channel quality data from
cellular base-stations across different frequency bands and
operators. The tool allows us to extract fine-grained met-
rics that capture channel quality of the UE across different
RBGs over time. We move around with this setup to collect
channel quality traces at different locations relative to the
transmitting cell, mapping different chunks of the resulting
trace to different users in our simulations.
Software Implementation.We also implement SiRAN as
a separate module in software on a 12th Gen Intel Core

i9-12900F machine in order to evaluate its computational
overhead. Specifically, we assess the time it takes for making
its joint scheduling and muting decisions across all RBGs
in a TTI for different 5G configurations (that vary in TTI
duration and the number of RBGs per TTI). Our software
implementation aligns with the move towards virtualized
RAN, where RAN processing is done in software [3, 55].

6 Evaluation
Our evaluation is divided into three key components:
1. Comparisonwith Baselines. In §6.2, we use trace-driven
simulations across scenarios spanning hundreds of users split
across slices with diverse objectives to show how SiRAN
consistently outperforms the following baselines:
(i) RadioSaber [18]: that does channel-aware slicing at each
cell without any interference management.
(ii) Single objective muting (SOM [10, 27, 45]): This baseline
uses channel-aware RAN slicing, and schedules RBGs across
users within each slice as per their individual objectives.
However, it uses the single objective muting algorithm dis-
cussed in §3.2 to assess the scores of scheduled users and
make its muting decision as per the specified global objective
agnostic of individual slice objectives.
(iii) RSEP [21]: that assigns a given slice the same set of
RBGs at each cell, thereby ignoring channel diversity when
scheduling RBGs. It then performs objective-based muting
decisions for individual slices in isolation.
2. Comparison with Exhaustive Approach. In §6.3, we
evaluate how SiRAN’s techniques to approximate the benefit
and cost of muting closely match the outcome of the more
rigorous (exhaustive) assessment that requires repeatedly re-
running the scheduler. SiRAN’s logic comfortably fits within
the TTI budget across different 5G configurations, while the
exhaustive approach is prohibitively expensive.
3. Factor Analysis. We individually evaluate the impact of
certain design choices made by SiRAN in Appendix E.4.

6.1 Experiment Settings
We simulate a multi-cell deployment comprising one macro
cell and four small cells (similar towhat is depicted in Fig. 2) [6,
40]. We configure each cell with a bandwidth of 100 MHz,
split across 512 RBs per TTI, grouped into 64 RBGs [49]. The
small cells are deployed uniformly within the macro-cell’s
coverage region at a randomly-chosen distance of at least
300m from the macro-cell and 500m from neighboring small
cells. We simulate 160 users split across 8 slices [6]. We sit-
uate each user within the coverage region of a randomly
selected small cell with a probability of 2/3, and outside of
the coverage region of any small cell (thereby attached to the
macro-cell) with probability 1/3. Of the total users, 60% are
static while 40% are mobile (traveling at speeds ranging from
3 to 30 km/h). Once a user is generated, we apply the 3GPP
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Figure 7: SiRAN’s, RSEP’s and SOM-PF’s and SOM-TP’s impact on slice-level performance when compared to RadioSaber (no muting) for
(b) PF slices and (c) Max TP slices under Scenario 1, aggregated across 50 experiment runs with different seeds.

urban area path loss model to calculate the user’s wideband
channel quality (aggregated across all RBGs) based on its
distance from each cell. We then assign a real-world trace
to each user that maps the computed wideband value for
each cell (thereby extracting the effects of channel diversity
from real-world conditions). We use the standard policy of
assigning each user the serving cell from which it experi-
ences highest wideband channel quality. We configure each
slice to have the same quota of RBGs at each cell.

We vary the slice objectives and user traffic patterns across
different scenarios, and test the scenarios against different
scheduling and muting schemes described above. For each
setting, we run experiments with multiple random seeds
that end up varying the specific user locations, and user
distribution across cells and slices. We capture different slice
objectives by varying the parameters of weighted 𝛼-fairness
(as described in §5). We experiment with two categories
of user traffic patterns: (i) backlogged (representing high
bandwidth video streaming, gaming, etc that would saturate
the datarate allocated to the user), and (ii) web flows (fixed
sized flows with Poisson inter-arrival times and flow sizes
drawn from a heavy-tailed distribution [41], generated at an
average rate of 10Mbps).

6.2 Comparative Evaluation
We use RadioSaber without muting as the reference baseline
and report the relative changes induced by SiRAN, SOM, and
RSEP over it for the given slice-objective.
Scenario 1: proportional fairness andmaximizing through-
put. In our first scenario (summarized in Table 7a), we con-
figure four slices with proportional fair (PF) objective by
setting 𝛼 = 1. We refer to these as “PF slices”. The remaining
four slices (referred to as MT slices) are configured with the
objective of maximizing throughput (MT) by setting 𝛼 = 0.
We accordingly experiment with two different variants of
SOM baseline, one configured with PF as the global objective
and another with MT as the global objective. Fig. 7 reports
the results (aggregated over 50 runs): In Fig 7b we compute
the percentage improvement in the PF metric for each of
the PF slices, when compared to RadioSaber (no muting),

and plot the resulting CDF. Fig 7c similarly plots the CDF
of the percentage improvement in the total throughput over
RadioSaber (no muting) for each of the MT slices.
(i) SiRAN vs RadioSaber without muting: SiRAN’s interference
management benefits slices across the board when compared
to no muting, resulting in an average of 33.5% increase in
PF metric for the PF slices (Fig 7b) and 9.3% increase in
throughput for the MT slices (Fig7c).
(ii) SiRAN vs SOM: SOM’s performance depends on how the
global objective is configured. SOM-PF (configured with PF
objective) results in an average of 37.4% increase in PF metric
over RadioSaber without muting (similar to SiRAN) for the
PF slices. However, it comes at the cost of hurting a large
proportion of MT slices (more than 37% slices, as shown
in Fig. 7c) whose objective does not align with SOM-PF,
hence violating performance isolation. In contrast, SOM-
MT (configured with MT objective) substantially improves
throughput for the MT slices (with an average increase of
35.2% over nomuting), but it comes at the cost of significantly
hurting the PF slices thereby violating performance isolation
between slices (we cut off the x-axis at -200%, so the extent
of this cost is not fully visible). This drastic penalty is caused
by the gross misalignment between SOM’s muting objective
(MT) and the slice’s scheduling objective (PF), where the PF
slice often allocates RBGs to relatively poor users (that suffer
from low channel quality) in order to achieve fairness, and
SOM optimizing for throughput pointedly mutes those RBGs
(with low MT scores), thereby degrading the PF metric.
(iii) SiRAN vs RSEP: RSEP’s performance is inferior to SiRAN’s
across all PF slices, with 18.4% lower PF metric than SiRAN
on an average. For the MT slices, RSEP fares slightly bet-
ter than SiRAN for half of the slices (which are incidentally
allocated reasonably good RBGs and benefit from isolated
muting decisions with RSEP). However, it has worse through-
put than SiRAN for the other half, of which 26.5% slices have
even worse throughput than the baseline, caused by RSEP’s
channel-unaware scheduling.
Scenario 2: varying degree of fairness. In this scenario
(summarized in Table 8a), we configure four slices (referred
as PF slices) with proportional fair (PF) objective by setting

10



Performance Isolation for 5G RAN Slices while Managing Interference

Parameter PF Slices 𝛼 = 3
Fair Slices

# Slices 4 4
Traffic
Pattern Backlogged Backlogged

Objective PF (𝛼 = 1) Fairness
with 𝛼 = 3

Metric
∑

𝑖 log𝑥𝑖
10%ile,
avg tpt

Result Fig. 8b Fig. 8c
Fig. 8d

(a) Scenario 2 configuration

−50 0 50 100
%age Increase in PF Metric

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SiRAN
RSEP
Single Objective 
Muting (PF)

(b) Per slice performance of PF-slices

SiRAN RSEP SOM-PF
Algorithm

0
10
20
30
40
50

%
ag

e 
Ga

in

(c) % increase in 10th per-
centile throughput across
users in 𝛼 = 3

SiRAN RSEP SOM-PF
Algorithm

−20

−10

0

%
ag

e 
Ga

in

(d) % increase in avg through-
put across users in 𝛼 = 3 Fair
slices

Figure 8: SiRAN’s, RSEP’s and SOM’s impact on slice-level performance when compared to RadioSaber (no muting) for the (b) PF slices and
(c, d) 𝛼 = 3 Fair slices under Scenario 2, aggregated across 50 experiment runs with different seeds.

𝛼 = 1. The remaining four slices were configured with an ob-
jective with higher degree of throughput fairness (𝛼 set to 3).
We refer to these as “𝛼 = 3 Fair slices”. We configure the SOM
baseline with a global objective that maps to PF. All users
are configured with backlogged traffic pattern. We report the
results (aggregated over 50 runs with different seeds) in Fig
8. Fig 8b plots the CDF of percentage improvement in the PF
metric experienced by each of the PF slices, when compared
to RadioSaber (no muting). Fig. 8c plots the percentage im-
provement in the throughput of the poorest (lowest 10%ile)
users over RadioSaber (no muting), as a measure of fairness
for 𝛼 = 3 Fair slices. Fig. 8d plots the corresponding percent-
age improvement in the average throughput across all users
for 𝛼 = 3 Fair slices. We have the following key takeaways:
(i) SiRAN vs RadioSaber without muting: SiRAN’s interference
management benefits slices across the board. For the set of
PF slices, the corresponding PF metric of each slice increases
with muting (as shown in Fig 8b), resulting in 48.0% average
improvement over RadioSaber without muting. For the set of
𝛼 = 3 Fair slices, the throughput of the poorest (lowest 10%ile
users) increases by 56.1% with SiRAN (Fig. 8c). The average
throughput (not directly aligned with fairness objective) also
improves by a marginal 3.4% (Fig. 8d).
(ii) SiRAN vs SOM:We find that SOM, configured with global
PF objective, performs as well as SiRAN for the PF slices
(Fig 8b). It also improves 10%ile throughput for the 𝛼 = 3
Fair slices by 44.3% over no muting – SOM optimizing for
proportional fairness with 𝛼 = 1 helps these users, but not
to the same extent as SiRAN that can better tailor its muting
decisions with the 𝛼 = 3 fair objective of these slices (Fig. 8c).
(iii) SiRAN vs RSEP: RSEP’s performance is inferior to SiRAN’s
across all PF slices, with 33% lower PF metric than SiRAN on
an average (Fig 8b). When compared to RadioSaber no mute,
RSEP is able to improve performance for 71% of slices due
to muting, but 29% slices experience worse performance due
to channel unawareness. For the 𝛼 = 3 Fair slices, we find
that RSEP is able to achieve sufficiently good throughput

(similar to SiRAN) for the poorest 10%ile users that are more
prone to the effects of interference than channel diversity
(Fig. 8c). However, it induces a 26.9% reduction in the average
throughput across all users in this category of slices due to
channel-unaware scheduling, when compared to RadioSaber,
resulting in an overall poorer outcome than SiRAN (Fig. 8d).
Scenario 3: varying weights across users. In this scenario
(summarized in Table 9a), we configure the first four slices
(referred to as WPF slices) with weighted proportional fair-
ness objective, setting 𝛼 = 1, with 40% of randomly selected
users having a very high weight of 1000 and web flow traf-
fic pattern, and the remaining 60% users have a weight of
1 and backlogged traffic pattern. The remaining four slices
(referred to as PF slices) are configured with proportional
fairness objective with equal weight and backlogged traf-
fic pattern across all users. We try two variants of SOM
here – SOM-WPF and SOM-PF. SOM-WPF is configured with
weighted PF as the global objective (where the prioritized 40%
users of WPF slices have a weight of 1000 and all other users
have a weight of 1). SOM-PF is configured with PF objective.
We report the results in Fig. 9. We consider two metrics for
WPF slices: reduction in median flow completion time (FCT)
of the prioritized 40% users, when compared to RadioSaber
without muting (Fig. 9b), and the average throughput of the
remaining 60% users (Fig. 9c). For the PF slices, we report
improvement in PF metric over RadioSaber without muting
(Fig. 9d), similar to other scenarios.
(i) SiRAN vs RadioSaber without muting: SiRAN results in
66.2% reduction in median FCT for the prioritized users in
WPF slices over RadioSaber without muting (Fig. 9b), along
with a 15.0% improvement in overall throughput of the non-
prioritized users (Fig. 9c). Among the PF slices, SiRAN in-
creases the PF metric of all slices (Fig. 9d), with an average
increase of 45.1% over no muting.
(ii) SiRAN vs SOM: SOM’s performance again depends on
how the global objective aligns. SOM-WPF results in 68%
reduction in median FCT of the prioritized users in the WPF
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(b,c) Weighted PF slices and (d) PF slices under Scenario 3, aggregated across 50 experiment runs with different seeds.
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Figure 10: Comparing SiRAN with exhaustive assessment in terms
of (a) performance and (b) computational overhead.

slices over no muting. However, it has 25% lower PF metric
than SiRAN for the PF slices, with 19% of these slices having
even worse performance than without muting. SOM-PF, in
contrast, fares as well as SiRAN for the PF slices, but has 21%
higher median FCT (or lower reduction in FCT) than SiRAN
for the prioritized users in WPF slices.
(iii) SiRAN vs RSEP: RSEP underperforms SiRAN across the
board in this scenario due to its channel agnostic slicing.
It has 48% higher median FCT for the prioritized users in
WPF slices when compared to SiRAN. It further achieves 39%
lower throughput than SiRAN for the non-prioritized users
in the WPF slices. For the PF slices, RSEP has 37.0% lower
PF metric compared to SiRAN on an average, with almost
40% slices performing worse than RadioSaber no muting.
Key Takeaway. SiRAN’s muting decisions benefit a sub-
stantial proportion of slices over RadioSaber (channel-aware
slicing without muting), but without penalizing any other
slice. In contrast, RSEP has inferior performance for many
slices (even when compared to RadioSaber without muting)
due to lack of channel-aware scheduling. SOM typically ends
up penalizing slices with misaligned objective, thus breaking
performance isolation across slices. Our results in Appendix
E confirm the same trends as we vary number of users, slices
and cells, and test settings with more than two categories of
objectives. We also evaluate settings where slices have un-
equal quota across cells (SiRAN can deal with this naturally,
while RSEP breaks in this setting).

6.3 Comparison w/ Exhaustive Assessment
In Fig. 10a we show how SiRAN (with its heuristics to assess
benefit and cost of muting without repeatedly re-running
the scheduler) compares against a variant that re-runs the
schedulers for a more rigorous assessment (we refer to this
variant as exhaustive assessment). We find that SiRAN’s well-
designed approximations produce no significant difference
(+2.8%) in the outcome. For brevity, we only report a key
result for scenario 3 – median FCT of prioritized users in
WPF slices –(Fig. 10a), but trend holds more generally.

We use the software implementation (described in §5) on
a single core to evaluate the runtime latency of both SiRAN
and the exhaustive assessment baseline. Fig. 10b shows the
results with 5G numerology 1 configuration (500𝜇s TTI and
32 RBGs), four small cells and five slices. We vary the total
number of users from 200 to 800 (3GPP standards recom-
mend 200-400 number of users for a cluster of 1 macro-cell
and four small cells [6]). We find that SiRAN’s runtime la-
tency comfortably fits within the TTI budget with up to 600
users. The exhaustive assessment approach, in contrast, ex-
ceeds the TTI budget even with 200 users. The exhaustive
approach can potentially be parallelized to use more cores
and reduce latency, but the increased cost and power might
not be worth it given that SiRAN’s approximations work as
well (as shown in Fig. 10a). We repeat these experiments with
varying numbers of cells, slices, and users, and for other 5G
numerologies in Appendix D, confirming the same trends.

7 Concluding Remarks
In this paper, we present SiRAN, the first system that per-
forms channel-aware RAN slicing across multiple cells while
managing interference, maintaining isolation between slices
and supporting customizable and diverse objectives within
each slice. While our work focuses on downlink transmis-
sions, we believe similar insights can also be applied to up-
link. Moreover, we believe SiRAN’s framework is not limited
to muting alone, but can be applied more broadly to any
coordination-based interference management scheme (we
leave detailed exploration to future work).

12



Performance Isolation for 5G RAN Slices while Managing Interference

References

[1] A guide to 5G small cells and macrocells. https:
//www.essentracomponents.com/en-us/news/industries/telecoms-
data/a-guide-to-5g-small-cells-and-macrocells.

[2] Cricket Wireless. https://www.cricketwireless.com/.
[3] FlexRAN Reference Architecture for Wireless Access.

https://www.intel.com/content/www/us/en/developer/topic-
technology/edge-5g/tools/flexran.html.

[4] Google Fi Wireless. https://fi.google.com/about/.
[5] Coordinated multi-point operation for lte physical layer

aspects (3gpp release 11 3gpp tr 36.819 v11.2.0 2013-
09). https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2498, 2013.

[6] Further advancements for e-utra physical layer aspects. Technical Re-
port 36.814, 3rd Generation Partnership Project (3GPP), 2020. Version
9.0.0.

[7] 5G Data Traffic Explosion Will Drive 5G Small Cell Deployments to 13
million by 2027. https://www.abiresearch.com/press/5g-data-traffic-
explosion-will-drive-5g-small-cell-deployments-to-13-million-by-
2027, 2022.

[8] US cell towers and small cells: By the numbers.
https://www.lightreading.com/digital-transformation/us-cell-
towers-and-small-cells-by-the-numbers, 2022.

[9] 3rd Generation Partnership Project (3GPP). Physical Layer Procedures
for Data. Technical Report TS 138 214, ETSI, 2021.

[10] R. Agrawal, A. Bedekar, S. Kalyanasundaram, N. Arulselvan, T. Kolding,
and H. Kroener. Centralized and decentralized coordinated scheduling
with muting. In 2014 IEEE 79th Vehicular Technology Conference (VTC
Spring), pages 1–5, 2014.

[11] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang. What will 5g be? IEEE Journal on Selected Areas in
Communications, 32(6):1065–1082, 2014.

[12] G. S. Association. 5g network slicing self-management white pa-
per. https://www-file.huawei.com/-/media/corporate/pdf/news/5g-
network-slicing-self-management-white-paper.pdf?la=en-us, 2020.

[13] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson,
M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A. Fehske. How
much energy is needed to run a wireless network? IEEE Wireless
Communications, 18(5):40–49, 2011.

[14] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic,
R. T. Sukhavasi, C. Patel, and S. Geirhofer. Network densification: the
dominant theme for wireless evolution into 5g. IEEE Communications
Magazine, 52(2):82–89, 2014.

[15] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski.
Five disruptive technology directions for 5g. IEEE Communications
Magazine, 52(2):74–80, 2014.

[16] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez. Multi-
tenant radio access network slicing: Statistical multiplexing of spatial
loads. IEEE/ACM Transactions on Networking, 25(5):3044–3058, 2017.

[17] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda. Downlink
packet scheduling in lte cellular networks: Key design issues and a
survey. IEEE Communications Surveys Tutorials, 15(2):678–700, 2013.

[18] Y. Chen, R. Yao, H. Hassanieh, and R. Mittal. Channel-Aware 5g RAN
slicing with customizable schedulers. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), pages
1767–1782, 2023.

[19] E. Dahlman, S. Parkvall, and J. Sköld. Chapter 13 - multi-point coor-
dination and transmission. In E. Dahlman, S. Parkvall, and J. Sköld,
editors, 4G LTE-Advanced Pro and The Road to 5G (Third Edition), pages
331–345. Academic Press, third edition edition, 2016.

[20] M. Dirani, Z. Altman, and M. Salaun. Chapter 7 - autonomics in
radio access networks. In N. Agoulmine, editor, Autonomic Network
Management Principles, pages 141–166. Academic Press, Oxford, 2011.

[21] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia. The slice is served:
Enforcing radio access network slicing in virtualized 5g systems. In
IEEE INFOCOM, page 442–450, 2019.

[22] Ericsson. Maximizing capacity in spectrum-limited networks.
https://www.ericsson.com/en/reports-and-papers/microwave-
outlook/articles/maximizing-capacity-in-spectrum-limited-
networks, 2023.

[23] ETSI. 5G; 5G System; Network Slice Selection Services (3GPP TS
29.531 version 15.1.0 Release 15). https://www.etsi.org/deliver/etsi_ts/
129500_129599/129531/15.01.00_60/ts_129531v150100p.pdf, 2018.

[24] ETSI. Evolved universal terrestrial radio access (e-utra); physical layer
procedures. https://www.etsi.org/deliver/etsi_ts/136200_136299/
136213/15.10.00_60/ts_136213v151000p.pdf, 2020.

[25] X. Foukas, M. K. Marina, and K. Kontovasilis. Orion: Ran slicing for a
flexible and cost-effective multi-service mobile network architecture.
In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. Association for Computing Machinery,
2017.

[26] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. Network
slicing in 5g: Survey and challenges. IEEE Communications Magazine,
2017.

[27] S. Gulati, S. Kalyanasundaram, P. Nashine, B. Natarajan, R. Agrawal,
and A. Bedekar. Performance analysis of distributed multi-cell coordi-
nated scheduler. In 2015 IEEE 82nd Vehicular Technology Conference
(VTC2015-Fall), pages 1–5, 2015.

[28] Y. Huang, S. Li, Y. T. Hou, and W. Lou. GPF: A GPU-Based Design
to Achieve 100us Scheduling for 5G NR. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking.
Association for Computing Machinery, 2018.

[29] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P.
Mayer, L. Thiele, and V. Jungnickel. Coordinated multipoint: Concepts,
performance, and field trial results. IEEE Communications Magazine,
49(2):102–111, 2011.

[30] V. Jungnickel, L. Thiele, T. Wirth, T. Haustein, S. Schiffermuller,
A. Forck, S. Wahls, S. Jaeckel, S. Schubert, H. Gabler, C. Juchems,
F. Luhn, R. Zavrtak, H. Droste, G. Kadel, W. Kreher, J. Mueller, W. Sto-
ermer, and G. Wannemacher. Coordinated multipoint trials in the
downlink. In 2009 IEEE Globecom Workshops, pages 1–7, 2009.

[31] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communi-
cation networks: shadow prices, proportional fairness and stability. J.
Oper. Res. Soc., 49(3):237–252, 1998.

[32] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan. Nvs: A virtual-
ization substrate for wimax networks. In Proceedings of the Sixteenth
Annual International Conference on Mobile Computing and Networking.
Association for Computing Machinery, 2010.

[33] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan. Nvs: A substrate
for virtualizing wireless resources in cellular networks. IEEE/ACM
Trans. Network., oct 2012.

[34] R. Kwan, C. Leung, and J. Zhang. Proportional fair multiuser schedul-
ing in lte. IEEE Signal Processing Letters, 2009.

[35] N. Lazarev, T. Ji, A. Kalia, D. Kim, I. Marinos, F. Y. Yan, C. Delimitrou,
Z. Zhang, and A. Akella. Resilient baseband processing in virtualized
rans with slingshot. In Proceedings of the ACM SIGCOMM 2023 Con-
ference, ACM SIGCOMM ’23, page 654–667, New York, NY, USA, 2023.
Association for Computing Machinery.

[36] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and
K. Sayana. Coordinated multipoint transmission and reception in
lte-advanced: deployment scenarios and operational challenges. IEEE
Communications Magazine, 50(2):148–155, 2012.

13

https://www.essentracomponents.com/en-us/news/industries/telecoms-data/a-guide-to-5g-small-cells-and-macrocells
https://www.essentracomponents.com/en-us/news/industries/telecoms-data/a-guide-to-5g-small-cells-and-macrocells
https://www.essentracomponents.com/en-us/news/industries/telecoms-data/a-guide-to-5g-small-cells-and-macrocells
https://www.cricketwireless.com/
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://fi.google.com/about/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2498
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2498
https://www-file.huawei.com/-/media/corporate/pdf/news/5g-network-slicing-self-management-white-paper.pdf?la=en-us
https://www-file.huawei.com/-/media/corporate/pdf/news/5g-network-slicing-self-management-white-paper.pdf?la=en-us
https://www.ericsson.com/en/reports-and-papers/microwave-outlook/articles/maximizing-capacity-in-spectrum-limited-networks
https://www.ericsson.com/en/reports-and-papers/microwave-outlook/articles/maximizing-capacity-in-spectrum-limited-networks
https://www.ericsson.com/en/reports-and-papers/microwave-outlook/articles/maximizing-capacity-in-spectrum-limited-networks
https://www.etsi.org/deliver/etsi_ts/129500_129599/129531/15.01.00_60/ts_129531v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129531/15.01.00_60/ts_129531v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/15.10.00_60/ts_136213v151000p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/15.10.00_60/ts_136213v151000p.pdf


Anon.

[37] G. R. MacCartney and T. S. Rappaport. Millimeter-wave base station
diversity for 5g coordinated multipoint (comp) applications. IEEE
Transactions on Wireless Communications, 18(7):3395–3410, 2019.

[38] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan. Ra-
dio access network sharing in cellular networks. In 2013 21st IEEE
International Conference on Network Protocols (ICNP), pages 1–10, 2013.

[39] G. Manganaro and D. M. Leenaerts. Advances in analog and RF IC
design for wireless communication systems. Academic Press, 2013.

[40] R. Misra, A. Gudipati, and S. Katti. Quickc: Practical sub-millisecond
transport for small cells. In Proc. ACM Mobicom, page 109–121, 2016.

[41] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recursively Cautious
Congestion Control. In Proc. USENIX NSDI, pages 373–385, 2014.

[42] L. Peterson and O. Sunay. 5G Mobile Networks: A Systems Approach.
USA, 2020.

[43] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda. Simulating
lte cellular systems: An open-source framework. IEEE Transactions on
Vehicular Technology, 2011.

[44] R. Radjassamy. Think Small (Cell) to Go Big on 5G. RCR Wireless
White Paper, 2021.

[45] O. D. Ramos-Cantor, J. Belschner, G. Hegde, and M. Pesavento. Cen-
tralized coordinated scheduling in lte-advanced networks. EURASIP
Journal on Wireless communications and Networking, 2017(1):1–14,
2017.

[46] A. Rao. 5g network slicing: crossdomain orchestration and manage-
ment will drive commercialization. https://www.cisco.com/c/dam/
en/us/products/collateral/cloud-systems-management/network-
services-orchestrator/white-paper-sp-5g-network-slicing.pdf, 2020.

[47] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim. Interference management
in ofdma femtocell networks: issues and approaches. IEEE Wireless
Communications, 19(3):86–95, 2012.

[48] sharetech. Resource allocation type. https://www.sharetechnote.com/
html/Handbook_LTE_RAType.html, 2020.

[49] ShareTechnote. 5g resource allocation types, 2024.
[50] M. U. A. Siddiqui, F. Qamar, F. Ahmed, Q. N. Nguyen, and R. Hassan.

Interference management in 5g and beyond network: Requirements,
challenges and future directions. IEEE Access, 9:68932–68965, 2021.

[51] S. Sun, Q. Gao, Y. Peng, Y. Wang, and L. Song. Interference manage-
ment through comp in 3gpp lte-advanced networks. IEEE Wireless
Communications, 20(1):59–66, 2013.

[52] Unknown. Moving 5g spectrum to a shared resource.
https://www.rcrwireless.com/20170404/5g/20170404analyst-
anglemoving-5g-spectrum-shared-resource, apr 2017. Accessed:
2024-04-28.

[53] C.Wengerter, J. Ohlhorst, andA. von Elbwart. Fairness and throughput
analysis for generalized proportional fair frequency scheduling in
ofdma. In 2005 IEEE 61st Vehicular Technology Conference, pages 1903–
1907 Vol. 3, 2005.

[54] Y. Xie and K. Jamieson. Ng-scope: Fine-grained telemetry for nextg
cellular networks. Proc. ACM Meas. Anal. Comput. Syst., 6(1), feb 2022.

[55] J. Xing, J. Gong, X. Foukas, A. Kalia, D. Kim, and M. Kotaru. Enabling
Resilience in Virtualized RANs with Atlas. Association for Computing
Machinery, New York, NY, USA, 2023.

[56] Y. Zhou, L. Liu, H. Du, L. Tian, X. Wang, and J. Shi. An overview on
intercell interference management in mobile cellular networks: From
2g to 5g. In 2014 IEEE International Conference on Communication
Systems, pages 217–221, 2014.

14

https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.sharetechnote.com/html/Handbook_LTE_RAType.html
https://www.sharetechnote.com/html/Handbook_LTE_RAType.html
https://www.rcrwireless.com/20170404/5g/20170404analyst-anglemoving-5g-spectrum-shared-resource
https://www.rcrwireless.com/20170404/5g/20170404analyst-anglemoving-5g-spectrum-shared-resource


Performance Isolation for 5G RAN Slices while Managing Interference

Appendix

A Importance of Small Cells and Frequency
Sharing
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Figure 11: System throughput under different frequency allocation
strategies

Frequency Sharing. A key design decision in multi-cell
deployments concerns how to partition the radio frequency
among cells. One option is to partition the frequency stati-
cally, ensuring that neighboring cells never transmit at the
same frequency and thus avoid interference. However, this
approach leads to inefficient spectrum usage, reducing the
usable bandwidth for each cell. An alternative is to allow
neighboring cells to share the same frequency band (fre-
quency reuse one). This introduces the challenge of manag-
ing interference that would arise when two cells transmit
simultaneously on the same frequency, degrading the chan-
nel quality users in the overlapping coverage regions of both
cells. Nonetheless, dynamically managing interference (de-
pending on when which users suffer from it) still results in
better resource utilization and overall system performance
compared to statically partitioning radio frequency among
cells. These performance benefits of frequency reuse are well-
known [20, 22], making it a preferred deployment choice in
many settings [52].
To understand the significance of these choices, we con-

duct a simple experiment, starting with 150 users, attached
to a single macro-cell, randomly distributed within its range.
We next introduce 4 small cells into the macro-cell’s cover-
age region, but statically partition the frequency (reserving
50% of the bandwidth for the macro-cell, with the remain-
ing 50% used by small cells). This results in 100% higher
throughput compared to single cell setting. We next evaluate
the multi-cell setup under frequency re-use one, where the
entire frequency band is shared across cells. This improves
throughput by 70% over the static partitioning setup. Dy-
namically conducting interference management using the
muting strategy described in §3.2 (for throughput maximiza-
tion objective) further improves throughput by an additional
35%.

B Channel Quality Information for Muting

Assessment of muting decisions require knowing the chan-
nel quality of users with and without interference. 5G New
Radio (NR) scheduling allows for the configuration of a set
of Resource Elements (REs)—smaller individual subcarriers
within an RBG—to be dedicated for the purpose of interfer-
ence measurement, known as the Channel State Indicator
Interference Measurement Resource (CSI-IM) [9]. Coordinat-
ing cells periodically co-schedule known reference symbols
and zero-power symbols sequentially, based on the Channel
Feedback interval (typically 40 ms), to achieve accurate per-
cell interference values. For example, on Resource Element
𝑟𝑖 , Cell 𝐶 𝑗 would transmit a known Reference Symbol while
Cell𝐶 𝑗+1 to𝐶𝑛 would schedule a Zero Power Reference Sym-
bol (ZP-CSI-RS); here, Cell 𝐶 𝑗 is transmitting and creating
interference, while all other cells are ’quiet’ and only measur-
ing the interference created by Cell 𝐶 𝑗 [19]. This process is
iteratively repeated by all the cells in the coordinating clus-
ter—one cell transmitting and the rest remaining quiet on
those REs and measuring the transmitter’s interference—to
achieve accurate interference values. This measurement is
cost-effective since only a subset of an RBG (typically 2 out
of 48 REs per RBG) are allocated for CSI-IM, allowing normal
data transmission on all remaining REs of the RBG.

C Details about SiRAN’s Cost Computation

We take the scores associated with each RBG allocated to a
given slice at a given cell under the initial allocation (men-
tioned in §4.3), and group these RBGs into clusters. Our
clustering logic is cheap and simple – we compute the aver-
age score (𝜇) and the standard deviation (𝜎) across all RBGs
allocated to the slice, and cluster them into atmost five sets –
RBGs with scores (i) ≤ (𝜇−2𝜎), (ii) > (𝜇−2𝜎) and ≤ (𝜇−𝜎),
(iii) within (𝜇 ± 𝜎), (iv) ≥ (𝜇 + 𝜎) and < (𝜇 + 2𝜎), and (v)
≥ (𝜇 + 2𝜎).
We then compute the average score within each cluster,

and use them to assess the worth of an RBG. Suppose the
cluster with lowest score for a given slice 𝑆𝑘 at cell 𝐶 𝑗 has 𝑛
RBGs and an average score of 𝑋 . As long as the total quota
reduced from slice 𝑆𝑘 due to muting at𝐶 𝑗 remains less than 𝑛
RBGs, we associate a worth of 𝑋 for each RBG (so a quota re-
duction of 0.5RBGs will incur a cost of 0.5𝑋 ). Once the quota
reduction for 𝑆𝑘 exceeds 𝑛 RBGs (due to muting decisions
made over multiple RBGs), we move over to considering
the cluster with the next lowest average score, and so on.
The clustering avoids excessive overfitting to the specific
RBG scores in the initial hypothetical allocation, which are
subject to change as muting decisions take place over RBGs.
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Figure 12: The runtime latency of SiRAN and the exhaustive assessment approach with 5G numerology 0, 2, and 3. The corresponding TTIs
are 125us, 250us, and 1000us.
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Figure 13: The runtime latency of SiRAN and the exhaustive-
assessment baseline with different number of cells and slices

D Runtime Overhead
Now we discuss how the numerology, the number of small
cells, and the number of slices affect the runtime latency
of both SiRAN and the exhaustive assessment baseline. In
the first experiment, we have five slices and five cells(same
configuration in §6.3), and evaluate both systems with 5G
numerology 0(32RBGs, 1000us TTI), 2(16RBGs, 250us TTI),
and 3(16RBGs, 125us TTI). Figure12 shows the runtime la-
tency of both systems with different number of users. We
can see the runtime latency of the exhaustive baseline is well
above one TTI in all numerology configurations with only
400 users. Nevertheless, SiRAN can support up to 600 users

in numerology 0, 2, and up to 400 users in numerology 3.
This concludes that SiRAN can be practical with most 5G
numerology configurations nowadays.
Then we’ll understand how the number of slices and the

number of cells affect the scheduling latency. In the following
experiments, we fix the total number of users to 400 and
use numerology 1. Fig. 13a shows that the runtime latency
increases as the number of cells increases since it requires
more coordination between cells. SiRAN can support up to 6
small cells. Fig. 13b shows that the number of slices doesn’t
have obvious impact on the runtime latency. However, the
runtime latency of the exhaustive baseline is againwell above
one TTI.

E Additional Evaluation:
To further demonstrate the robustness of SiRAN, we conduct
additional experiments by varying parameters such as num-
ber of cells, users and slices. The results of these experiments
are summarized below.
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Figure 14: SiRAN ’s, RSEP’s and SOM-PF’s and SOM-TP’s impact
on slice-level performance when compared to RadioSaber (no mut-
ing) for (a) PF slices and (b) Max TP slices under Scenario 2 with
unequal slice quotas and distribution across cells.
E.1 Varying Quota Across Cells
The traffic parameters for this experiment remain the same
as those described in Section 6.2, Table 7a. The key difference
is that approximately 75% of the users in the Max Through-
put slices are now attached to the Macro Cell, with only 25%
attached to the Small Cells. As a result, the quota of the Max

16



Performance Isolation for 5G RAN Slices while Managing Interference

Throughput slices gets increased proportionally at the Macro
Cell and reduced at the Small Cells. Conversely, for the Pro-
portional Fairness slices, the distribution is reversed, with
75% of users attached to the Small Cells and the remaining
25% to the Macro Cell. The results are shown in Figure 14.
(i) SiRAN vs RadioSaber without muting: SiRAN continues to
demonstrate its effectiveness, offering a mean improvement
of 10.2% in the PF metric for PF slices, while maintaining
slice-level isolation with near-zero loss across all slices (ap-
proximately 5% of slices experience a minor mean loss of
1.5%). For MT slices, SiRAN provides a 12.8% improvement
in throughput, again ensuring no performance degradation
for any slice.
(ii) SiRAN vs SOM: Under this unequal distribution, both
variants of SOM—configured with either the PF or MT met-
ric—fail to perform well on their respective metrics, break-
ing slice-level isolation and degrading performance for most
slices - 90% of all slices under SOM-PF and 50% of all slices
under SOM-MT see a reduction in their slice level metric
than compared to the no muting baseline. This failure stems
from the increased likelihood of having non-matching met-
rics across cells. For example, when SOM-PF attempts to
maximize the PF metric globally across all cells, it inadver-
tently includes the PF contributions of users from MT slices
in its global optimization decisions. Since these users in-
herently prioritize throughput over fairness, their inclusion
distorts the PF metric, resulting in poorly informed decisions
that harm slice-level objectives. Similarly, SOM-MT faces a
similar issue: by trying to globally maximize throughput, it
incorporates MT contributions from PF users, whose sched-
uling decisions focus on fairness rather than throughput.
This mismatched metric aggregation leads to suboptimal
global optimization and significantly impacts the individual
objectives of the slices.
(iii) SiRAN vs RSEP: The unequal distribution exacerbates
mismatches between RBs across cells, breaking RSEP’s RB-
linkage rule. This prevents RSEP from effectively manag-
ing interference on those RBs, further compounded by its
channel-unaware allocation mechanism. As a result, 90% of
all PF slices and 76% of all MT slices experience degraded
performance compared to the no muting baseline.

E.2 Varying Number of Slices
In this scenario (summarized in Table 15a), we increase the
number of slices to 12, consisting of three categories: PF slices
(4 slices) optimizing for proportional fairness (𝛼 = 1), MT
slices (4 slices) optimizing for throughput, and WPF slices (4
slices) using a weighted proportional fairness objective. The
WPF slices assign a high weight (1000) to 40% of randomly
selected users following a web flow traffic pattern, while
the remaining 60% of users have a weight of 1 and follow a
backlogged traffic pattern.

(i) SiRAN vs RadioSaber without muting: SiRAN maintains
its trend of ensuring slice-level isolation, providing targeted
performance improvements across slices while incurring
minimal loss (only a small subset of MT slices see a slight
−5% drop in performance). For the PF slices, SiRAN improves
the PF metric by an average of 86%, while for the MT slices, it
increases throughput by 12%. Among WPF slices, it reduces
the median FCT of prioritized internet flows by 27%.
(ii) SiRAN vs SOM: We evaluate all three SOM variants, each
optimizing a different global objective (PF, MT, WPF). As
seen in previous scenarios, SOM benefits slices aligned with
its chosen metric but imposes severe penalties on others. -
SOM-PF improves the PF metric by 72% (14% lower than
SiRAN) while limiting performance degradation to only 5%
of the slices. However, it performs poorly for MT slices, of-
fering only a 0.3% throughput improvement (11.3% lower
than SiRAN) while degrading 49% of the slices. - SOM-WPF
reduces the median FCT of prioritized internet flows by 30%
but severely impacts MT slices, decreasing throughput for
80% of them by an average of -5%, with some slices experi-
encing drops as large as -19%. - SOM-MT performs well for
MT slices, improving throughput by 39%, but drastically de-
grades the PF slices, reducing their PF metric by an average
of -200%, as seen in Fig. 15b. It also increases median FCT
by up to 500%, and we omit its results from Fig. 15d to avoid
distorting the figure.
(iii) SiRAN vs RSEP: Due to its channel-unaware scheduling,
RSEP consistently underperforms compared to SiRAN. It
provides only a 6% improvement for PF slices (80% lower
than SiRAN) while degrading 21% of slices. It further reduces
the average throughput of MT slices by -5% and offers only
a 13% median FCT improvement (14% lower than SiRAN).

E.3 Varying Users and Cells
To evaluate the scalability and consistency of SiRAN ’s perfor-
mance, we vary the number of users and cells while keeping
the traffic parameters controlled, as described in Table 9a.
The results, summarized in Fig. 16, confirm that the trends
observed in Section 6 hold across different configurations,
demonstrating that SiRAN maintains its effectiveness un-
der varying physical network configurations. For brevity,
we only include the results for the median reduction in the
FCT of prioritized web flow traffic but the trends hold across
other groups of users as well.

E.4 Design Justifications
To evaluate the impact of our system optimizations discussed
in Section §6, we measure system performance in their ab-
sence. We use the same underlying traffic distribution (but
with static users) as in Table 9a and record the reduction in
median FCT for the prioritized web flows. The results are
reported in Fig. 17.
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Parameter PF Slices TP Slices WPF Slices
# Slices 4 4 4
Traffic
Pattern Backlogged Backlogged •40% Web Flow
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∑
𝑖 log𝑥𝑖 avg tpt Median FCT
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Figure 15: SiRAN’s, RSEP’s and SOM’s impact on slice-level performance when compared to RadioSaber (no muting) for the (b) PF slices (b)
MT slices and (c) Weighted PF Slices
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Figure 16: SiRAN’s, RSEP’s and SOM W-PF’s and SOM-PF’s impact on median FCT for prioritized web flows when compared to RadioSaber
(no muting), across varying physical network parameters.
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Figure 17: Impact of SiRAN system optimizations on Median FCT

Impact of hypothetical baseline when computing ben-
efit. SiRAN computes the benefit of muting by comparing
the user score a slice achieves at a neighboring cell with a
hypothetical allocation where we compute the score that the
same slice would have achieved on the same RBG without
muting. We try a variant where we directly use the score
achieved by a slice at a neighboring cell without subtracting
the score from this hypothetical baseline. We find that it pro-
duces notably smaller reduction in median FCT of prioritized
users (10% lower than original SiRAN) when compared to
our original design (Fig. 17 first bar from the left).

Impact of cell selection heuristic. With multiple valid
muting hypothesis across cells, SiRAN selects one based on
benefit-cost ratio across the set of benefitting slices and side-
effect on other slices. We implement a variant where we
randomly select a hypothesis (which cell to mute) among
multiple valid ones. This simplified variant again produces a
notably smaller reduction inmedian FCT (11% lower than our
original design as shown in Fig. 17), justifying the usefulness
of our optimizations in this context.

F SiRAN Algorithm
The following algorithms outline the implementation logic
of the SiRAN system.

• At the heart of SiRAN lies a novel cost-benefit trade-
off algorithm, which determines the benefit for each
slice based on its unique metric. It assigns the cost
of muting exclusively to the slices that benefit from
the interference management decision. This logic is
captured in Algorithm 1, corresponding to the expla-
nation in Section 4.1.
• Algorithm 2 describes the muting logic, where each
cell is evaluated for muting at every RBG. The net
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benefit of each muting decision is computed based
on the logic detailed in Section 4.2.
• To accurately assess the cost for each slice, the sys-

tem estimates the average performance of each slice
at every cell for a single RBG. This heuristic informs
the cost-benefit tradeoff process. The algorithm, ex-
ecuted once per TTI, is summarized in Algorithm 3
and further explained in Section 4.3.

Algorithm 1 PerSliceCostBenefitTradeoff(S) (Called
by ConsiderMutingHypothesis)
1: Input: 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑠𝑙𝑖𝑐𝑒𝑠
2: Output: Updated 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑠𝑙𝑖𝑐𝑒𝑠 and 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡_𝑟𝑎𝑡𝑖𝑜

3: Initialize 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 ← 0
4: while True do
5: 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 ← False
6: for each 𝑠 in 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑠𝑙𝑖𝑐𝑒𝑠 do
7: if Net Benefit𝑠 < Avg Performance𝑠 ×

1
len(𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑠𝑙𝑖𝑐𝑒𝑠 ) then

8: Remove 𝑠 from 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑠𝑙𝑖𝑐𝑒𝑠
9: Reset 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 ← 0
10: 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 ← True
11: break
12: else
13: 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 ← 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡_𝑟𝑎𝑡𝑖𝑜 +

Net Benefit𝑠
Avg Performance𝑠× 1

len(𝑏𝑒𝑛𝑒𝑓 𝑖𝑡𝑡𝑖𝑛𝑔_𝑠𝑙𝑖𝑐𝑒𝑠 )
14: end if
15: end for
16: if not 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 then
17: break
18: end if
19: end while
20: return 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡_𝑟𝑎𝑡𝑖𝑜

Algorithm 2 ConsiderMutingHypothesis(RBG_R_i)

1: Initialize 𝑆 ← ∅ Set of slices that benefit from muting
2: Initialize max_benefit_ratio← 0
3: Initialize best_muting_option← None
4: for each 𝑖 in cells do
5: Mute 𝑖
6: Sched_Mute← Schedule across all Cells under Muting

(Store Schedule for Muted State)
7: Sched_NoMute ←

Schedule across all Cells without Muting (Store
Schedule for Non-Muted State)

8: for each Slice 𝑠 do
9: Compute Metric under Muting using Sched_Mute
10: Compute Metric without Muting using

Sched_NoMute
11: Net Benefit← ∑ |cells |

𝑐=0 Metric under Muting
12: −∑ |cells |

𝑐=0 Metric without Muting
13: if Net Benefit > 0 then
14: Add 𝑠 to 𝑆
15: end if
16: end for
17: current_benefit_ratio ←

PerSliceCostBenefitTradeoff(𝑆)
18: if current_benefit_ratio > max_benefit_ratio

then
19: max_benefit_ratio ←

current_benefit_ratio
20: best_muting_option← 𝑖

21: end if
22: end for
23: if max_benefit_ratio == 0 then
24: Return: No Muting
25: else
26: Apply Muting to best_muting_option
27: end if
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Algorithm3 ComputeAveragePerformanceForEachSlice()
1: Perform Complete Allocation across all RBGs under no

muting
2: Initialize Total Metric[𝑆] ← 0 and RBG Count[𝑆] ← 0

for all slices 𝑆
3: for each RBG 𝑅 do
4: Let 𝑆𝑅 ← Slice allocated to RBG 𝑅
5: Metric Achieved ← Metric𝑆𝑅 ,𝑅 {Performance metric

for 𝑆𝑅 on 𝑅}
6: Total Metric[𝑆𝑅] ← Total Metric[𝑆𝑅] +

Metric Achieved
7: RBG Count[𝑆𝑅] ← RBG Count[𝑆𝑅] + 1
8: end for
9: for each Slice 𝑆 do
10: if RBG Count[𝑆] > 0 then
11: Avg Performance𝑆 ←

Total Metric[𝑆 ]
RBG Count[𝑆 ]

12: end if
13: end for
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